3.2.7 \(\int \frac {1}{(a+b x^2) \sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=49 \[ \frac {\tan ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {b c-a d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {377, 205} \begin {gather*} \frac {\tan ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[b*c - a*d])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 49, normalized size = 1.00 \begin {gather*} \frac {\tan ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[b*c - a*d])

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 0.13, size = 103, normalized size = 2.10 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {b \sqrt {d} x^2}{\sqrt {a} \sqrt {b c-a d}}-\frac {b x \sqrt {c+d x^2}}{\sqrt {a} \sqrt {b c-a d}}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {b c-a d}}\right )}{\sqrt {a} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTan[(Sqrt[a]*Sqrt[d])/Sqrt[b*c - a*d] + (b*Sqrt[d]*x^2)/(Sqrt[a]*Sqrt[b*c - a*d]) - (b*x*Sqrt[c + d*x^2])
/(Sqrt[a]*Sqrt[b*c - a*d])]/(Sqrt[a]*Sqrt[b*c - a*d]))

________________________________________________________________________________________

fricas [B]  time = 1.20, size = 241, normalized size = 4.92 \begin {gather*} \left [-\frac {\sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, {\left (a b c - a^{2} d\right )}}, \frac {\arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{2 \, \sqrt {a b c - a^{2} d}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/4*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^
2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2))/(a*b*c -
a^2*d), 1/2*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3
+ (a*b*c^2 - a^2*c*d)*x))/sqrt(a*b*c - a^2*d)]

________________________________________________________________________________________

giac [A]  time = 0.60, size = 70, normalized size = 1.43 \begin {gather*} -\frac {\sqrt {d} \arctan \left (\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{\sqrt {a b c d - a^{2} d^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-sqrt(d)*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/sqrt(a*b*c*d -
a^2*d^2)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 306, normalized size = 6.24 \begin {gather*} -\frac {\ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}+\frac {\ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

1/2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b
)^(1/2)*((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x+(-a*b)^(1/2)/b))-
1/2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)
^(1/2)*((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x-(-a*b)^(1/2)/b))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (b x^{2} + a\right )} \sqrt {d x^{2} + c}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*sqrt(d*x^2 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \left \{\begin {array}{cl} \frac {\mathrm {atan}\left (\frac {x\,\sqrt {b\,c-a\,d}}{\sqrt {a}\,\sqrt {d\,x^2+c}}\right )}{\sqrt {-a\,\left (a\,d-b\,c\right )}} & \text {\ if\ \ }0<b\,c-a\,d\\ \frac {\ln \left (\frac {\sqrt {a\,\left (d\,x^2+c\right )}+x\,\sqrt {a\,d-b\,c}}{\sqrt {a\,\left (d\,x^2+c\right )}-x\,\sqrt {a\,d-b\,c}}\right )}{2\,\sqrt {a\,\left (a\,d-b\,c\right )}} & \text {\ if\ \ }b\,c-a\,d<0\\ \int \frac {1}{\left (b\,x^2+a\right )\,\sqrt {d\,x^2+c}} \,d x & \text {\ if\ \ }b\,c-a\,d\notin \mathbb {R}\vee a\,d=b\,c \end {array}\right . \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)*(c + d*x^2)^(1/2)),x)

[Out]

piecewise(0 < - a*d + b*c, atan((x*(- a*d + b*c)^(1/2))/(a^(1/2)*(c + d*x^2)^(1/2)))/(-a*(a*d - b*c))^(1/2), -
 a*d + b*c < 0, log(((a*(c + d*x^2))^(1/2) + x*(a*d - b*c)^(1/2))/((a*(c + d*x^2))^(1/2) - x*(a*d - b*c)^(1/2)
))/(2*(a*(a*d - b*c))^(1/2)), ~in(- a*d + b*c, 'real') | a*d == b*c, int(1/((a + b*x^2)*(c + d*x^2)^(1/2)), x)
)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x^{2}\right ) \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/((a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________